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F O R M A T I O N  OF S H O C K  WA VES 

IN F L O W  O F  C H A R G E  C A R R I E R S  IN S E M I C O N D U C T O R S  

D. A. Krymsk ikh  UDC 532.5+519.63 

A hydrodynamic model of the physics of semiconductors is studied numerically. It is shown that 
the solution of the problem of an (n+-n-n +) ballistic diode has a shock wave. This problem is 
solved using an iterative method. An economical conservative semi-implicit difference scheme 
is developed for search of a numerical solution. 

I n t r o d u c t i o n .  At present, hydrodynamic models have found wide application in modeling transport 
of charge carriers (electrons or holes) in semiconductors. These models treat the motion of charge carriers 
as a charged fluid flow. Gas-dynamic models [1] containing conservation laws for the number of particles. 
momentum, and energy, Poisson's equations for electric potential, and the Fourier law for specific heat flux 
have been used most widely. These models, however, have some disadvantages. In particuiar, they ignore the 
anisotropy of pressure. 

In the present paper, we study stationary solutions of the one-dimensional gas-dynamic model of [2], 
which allows for the anisotropy of pressure. We consider the problem of an (n+-n-n +) ballistic diode, which 
models electron flow in a silicon diode consisting of three regions with different doping densities. This model 
problem describes the heating of free electrons inside the semiconductor, and, therefore, it is widely used in 
testing hydrodynamic models in the physics of semiconductors [1]. 

From the mathematical point of view, the problem of an (n+-n-n +) ballistic diode is a boundary- 
value problem for a system of ordinary differential equations. In the present paper, numerical solutions of 
this problem are sought by an iterative method. As the evolution equations, we consider the hydrodynamic 
model of [2], which, for the problem of an (n+-n-n +) ballistic diode, is written as the following system of 
conservation laws: 

U, + J(U)~ = (G(U)T(U)~)~ + F ( x , U ) .  (1) 

Here t and x are tile time and spatial variable, U = (Ul, u2,  u3)*,  J = (Jl, j2, ja)*, ji = ji (U), G = (gl, g2, g3 )*. 
gi = gi(U), F = (fl ,  f2, f3)*, and fi = fi(x, U). The asterisk denotes transposition. 

To find an approximate stationary solution of system (1), we construct an economical conservative semi- 
implicit difference scheme. The numerical experiment performed showed that the solution of the problem of 
an (n+-n-n +) ballistic diode includes a shock wave. The result obtained in the present work is qualitatively 
different from results of numerical studies of gas-dynamic models ignoring the anisotropy of pressure (see, for 
 ;xampIe, It, al). 

H y d r o d y n a m i c  Mode l .  Electron flow in semiconductors is traditionally described using a 
hydrodynamic model that includes: 

- -  The law of conservation of the number of particles 

n, + = o; (2)  
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- -  The law of conservation of momen tum 

- -  The energy conservation law 

m e f f  / / t r n e f f  / z 

- -  The Poisson's equation for electric potential 
e 

= - ( n  - 
gs 

2envE 

m e f f  

n (  3Kz ) 
+ ( T  - T o )  ; 

7"2 m e f f  

(3) 

(4) 

(.5) 

Here n is the electron density (the number of free electrons in unit volume), v is the electron velocity, T is 
the electron temperature ,  h'~ is Boltzmann's constant,  Q is the specific heat flux, �9 is the electric potential, 
E = = ~ ,  is the electric intensity, To is the tempera ture  of the molecular lattice of the semiconductor, e is tile 
elementary charge, meff = mrme is the effective mass of an electron, where me is the mass of an electron and 
mT is a correction factor, r = r162 is the permit t ivi ty in silicon, e0 is the permittivity in vacuum, r = I1.7 is 
a correction factor for silicon, N(x)  is the doping density as a function of x, and Ts are the relaxation times. 
The relaxation times (10 -12 sec) from [4] are used: 

Ts = as + bs(E - 1) + c a e x p [ - d a ( E  - 1)] (a = 1, 2, 3), 

where as, bs, c~, and ds are constants and ,~ = meffv2/(2I'(~To) + 3T/(2To). We note that  Eqs. (2)-(5) are 
written for the case where the only charge carriers are electrons. 

To close system (2)-(5), we use the Fourier law. Anile and Pennisi [2] proposed the Fourier law that 
takes the anisotropy of pressure into account: 

5 v 1 1 )  K~Tx) .  (6) 

Here it is necessary to explain the term "anisotropy of pressure" as applied to a one-dimensional gas-dynamic 
model. Anile and Pennisi [2] studied an extended multidimensional hydrodynamic model in which the heat 
flux Q is a sought function, and the pressure is anisotropic. In [2], the extended hydrodynamic model is used 
to obtain the Fourier law for closure of the gas-dynamic model [in the case of the one-dimensional model, the 
Fourier law has the form (6)]. The gas-dynamic model with the Fourier law (6) describes the charge transport 
in semiconductors more adeqpately than the gas-dynamic model with the Fourier law 

Q = -5I ' (~r3nTT,/(2rnef f) ,  (7) 

that is derived directly from the Boltzmann equation ignoring the anisotropy of pressure [1]. 
We consider an n+-n-n  + ballistic diode consisting of three regions with different doping densities: 

n+-region, n-region, and n+-regiou. The doping density is N(x)  = N + in the,n+-region and N(x)  = N in 
n-region. Within the framework of the model from [2], the electron flow in the (n+-n-n  +) ballistic diode is 
described by the stationary forms of Eqs. (2)-(4), the Poisson's equation (5), and the Fourier law (6). At the 
ends of the diode, we impose the following boundary conditions [1]: 

n = N +, T = To for x = O, x = l; (8) 

N + K~To N + 
= KzT~ In for x = 0, �9 = In - -  + Y b for x = I~ (9) 

e ni  e n i  

Here I is the width of the (n+-n-n  +) diode, ni is the natural electron concentration, and Vb is the bias voltage 
in tile diode. 

We seek the electron flow in the ( n + - n - n  +) ballistic diode for t + r as the limit of the solution of 
Eqs. (2)-(6) subject  to boundary conditions (8) and (9) and a certain specified initial condition at the initial 
time t = 0. 
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For simplicity, we convert  to dimensionless quanti t ies:  

, x t' Cot , n , v T' T 
x = T '  - l ' n N + ,  v C0 To' 

Q ' -  Q r  e--2--~ E ' -  ~ E  
meffC~N + ' K~To' K~To' 

(10) 

where C0 2 = K~To/rneff. Below, the primes at dimensionless physical variables are omit ted.  
Equa t ion  (5) in the dimensionless quantities (10) takes the form 

~::. =/3(n - p(z)), (11) 

where /3 = e212N+/(<~K~To), p(x) = N ( x ) / N  + is a piecewise-constant  function: p(x) = 1 at 0 ~< x ~ l+. 
1 - l+ ~ z <~ 1 and p(x) = 5 at l+ < x < 1 - l+, where l+ is the width of the  n+-region, and (5 is the ratio 
of the doping densi ty  N(x)  in the n-region to the value of N(x)  in the  n+-region (5 = N / N  +, 0 < 5 < 1). 
Boundary condit ions (9) can be  wri t ten as 

0 = 4 %  for x = 0 ,  ( I ) = ( I ) 0 + I v "  b f o r  x = l ,  (12) 

where Go = In (N+/ni)  and ~ = eVb/(KsTo ). 
Treat ing  Eq. (11) as an ordinary differential equa t ion  for the unknown function (I) with boundarv 

conditions (12), we obtain  

z 1 

+ = +o + %~ + ~(x - ~) / ~(,~ - p(O) de - 9~ [ ( i  r p(() ) dr (13) 
0 x 

Differentiating (13) with respect  to x, we have 

1 

=--I/b - - / 3 / (n_  - p(())d(  +/3_/(1 - - ~ ' ) ( n  - p(())d( .  (14) E 
0 0 

Thus. it, is assumed that  in the problem of a n+-n-n + ballistic diode in Eqs. (3), (4), the electric intensity E 
is a specified function of the electron density n and the space variable x. 

In view of this, we formulate  a mixed problem whose solution in the limit t --+ ec describes the electron 
flow in the (n+-n-n  +) ballistic diode. For t --* eo, we seek a s ta t ionary solution of the sys tem 

Ut + a~ = ( a r ~ ) .  + F,  (15) 

that satisfies the  boundary  conditions 

n =  1, w = ( m  2 + 3 ) / 2  for x = 0 ,  x = l  (16) 

under tile specified initial condit ion 

n 

U - ~ - -  rr /  , 

'w 

F = F(E ,  u )  = 

u t=0 = uo(x) .  (17) 

J = J (U)  = 

I m 
2(w + rn2/n)/3 

-~(m2/n + >'3(2w - -~2/,0/(3n))/(2n) 

I ~ ) - h E  - m / n  

- m E  - (w - 3n/2)/r2 

?Yt -~- n l )~  w = n(v 2 + 3T) /2 ,  

Here 
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o) 
G = G ( U )  = 0 , T = ( 2 w  - m2/n)/(3n). 

5nTr3/2 

With allowance for transformation to the dimensionless quantities (10), system (15) is a vector form of Eqs. 
(2)-(4), and boundary conditions (16) are obtained from boundary conditions (8). 

After transformation to the dimensionless quantities, the relaxation times r~ take the form 

r ~ = ~ - { a ~ + b ~ ( W - 1 ) + c c ~ e x p [ - d ~ ( W - 1 ) ] }  ( a = l ,  2, 3), (18) 

where ~ = (Co~l)" 10 -12 sec. With allowance for (14), it is assumed that the right term F on the right side of 
system (15) is a function of x and U [F  = F(x, U)]. Thus, system (15) relates only components of the vector 
U, i.e., as noted above, the hydrodynamic model (2)-(6) can be written in the form of system (1). 

We note that the value of the electric potential  on the left boundary (I)0 does not influence the solution of 
the mixed problem (15)-(17). From (14) it follows that  among the parameters included in boundary conditions 
(9), only the bias voltage Va exerts an influence on the solution of the mixed problem (15)-(17). 

D i f f e r e n c e  M o d e l .  It is known that  in solutions of nonlinear systems of conservation laws there can 
be strong discontinuities even at smooth initial data. Therefore, it is not improbable that the solution of 
the problem of an (n+-n-n +) ballistic diode has discontinuities. Thus, the solution of system (15) should be 
understood in a generalized sense. 

The vector function U = U(t, x) is a generalized solution of system (15) if for any rectangle (c~, 3) x 
(a, b), the vector function U(t, x) is a solution of the integral equation 

b b /~ fl 

i U(t3, x) d x -  / U(a,x)dx + f J(U(t ,b))dt-  f J(U(t,a))dt 
a a Of 

Z Z b B 
= / GT.(t,b)dt- / GT.(,,a)d, + i /F(x,  U(t,x))d, dx. (19) 

Ol Oi a Ol 

Equation (19) describes solutions of system (15) with discontinuous physical variables, in particular, 
with possible discontinuities in the distributions of the electron density n and the electron velocity v. 

In the region D = {(t,x)lt >1 O, 0 <~ x <~ 1}, we introduce the grid Dffk = {(ti,xk)li = O, 1 , . . . :  k = 

0, K}, where ti = iA, x0 = 0,'xk = xk-1 + hk, XK = 1, A is the step in time t, and hk is the step of the space 
variable x between the nodes (ti,xk-1) and (ti, xk) of the grid. 

We approximate (15) by the conservative difference scheme 

�9 2 A  i i 

U~ +l = U}r hk+i + hk (gk+l/2 - Jk-w2) 

~"T,i+ 1 \ 

Gk+l/2 G k _ l / 2 ~  + . (20) 4 hk+l + hk hk+l k 
Here 

Jik+l/2 = ((rain (0, 3 (0, t ' �9 " ~ k + l / 2 ) ) J k + l  "4- (max 3 Ak+l/2) m i n  ( 0 ,  1 i - (0, Ak+W2 ) - max Ak+l/e))J k 

1 3 1 1 3 i 3 1 Ak+l/21~k+,/21 _ _ - -  __  ) ~ U k ) / ( ) ~ k + l / 2  Ak+l/2), 2 (~k+l/2lAk+l/21 

E~ = - ~ + ~  V ((1- xk>~ + (1-  xk_,)~L1)- l+-  (1-  21+) , 
k = l  

Ei~ E i = k-1  + ~hk(pk - (n'k + , 4 _ ~ ) / 2 ) ,  
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3 G/k+l/2 : G ( ( U ~ +  1 -}- U~) /2) ,  JZ k = J ( U ~ ) ,  Tic = T ( U ~ ) ,  "~+1/2 is the least eigenvalue and /~k+l/2 is the 
largest eigenvalue of the matrix Ak+l/2 = A((U~+ 1 + U~)/2) ,  A(U) = OJ /OU is the Jacobi matrix, U}, are 

the values of the solution of the scheme (20) at the node (ti, xk) of the grid D i h k, Pk = P ( X k ) , ( = r  
difference operator,  I is an identical operator, ~b is a translation operator, and ~bU~ = U~+ 1. The eigenvalues 

A~+I/2 of the matrix Ak+l/2 can be found from the general formulas for roots of the third-order polynomial. 

The characteristic equation det (A(U)  - ,kI) = 0 has the form 

y 3 + _3 v w - l +  mT y2 5 T(w + wv2)y _ 5 - 5 [ wvT 2 = 0, (21) 

where y = v -  ,k, w = T3/T1, ~ : (7"173 - -7"371) /7  "2, and 7,~ = ~'(b,~- c ,~d ,~exp[ -da (w /n -  1)]). Since it is 
difficult to obtain an explicit formula for the roots M of polynomial (21), it is suggested that the numerical 

i fluxes Jk+l/2 from [5] be used. They can be obtained without knowledge of the eigenvectors of the Jacobi 

matrix A(U).  The recurrence formulas for E~ are obtained from (14) by replacing the integrals by approximate 
values using the trapezoid rule. 

The scheme (20) is semi-implicit and it approximates (15) with first-order accuracy. As shown by 
numerical experiments, for the present scheme to be stable, it is necessary that  the step in time A be 
proportional to the step of the space variable h = min hk, i.e., A/h  = const. We note  that  to ensure stability 

k 
in explicit schemes, it is necessary that the relation A / h  2 = const hold. The scheme (20) is economical, i.e., 
the number of operations required to find the grid function in a new time layer is proportional to the number 
of nodes of the grid Dh~ k in one time layer. In addition, because the scheme (20) is conservative, its solution 

converges to the generalized solution of system (15), i.e., to the solution of Eq. (19). 
R e s u l t s  o f  N u m e r i c a l  E x p e r i m e n t s .  Numerical experiments were performed for the following values 

of the physical parameters. The effective electron mass meff has a correction factor m~ = 0.26. The width of 
the (n+-n-n +) diode is l = 6 �9 10 -7 m and thc width of the n+-region is l+ = 10 -7 m. The doping density 
is N(x) = 5 -  10 z3 m -3 in the n+-region and N(x)  = 2.1021 m -3 in the n region. The temperature of the 
molecular lattice of the semiconductor is To = 300 K. The bias voltage is I,~ = 1 V. The relaxation times rl. 
r2, and r3 determined in (18) have the constants 

al = 0.1153, bl = - 0 . 0 0 6 8 ,  

a2 = 0.4076, b2 = 0.0075, 

a3 = 0,077, b3 = -0.0033,  

cx = 0.4988, dl = 1.5137, 

c2 = 3.1546, d2 = 1.4833, 

c3 = 0.2879, d3 = 1.0053. 

The numerical experiments showed that the greatest errors in the numerical solution arise near (n+-I~) 
transitions. In view of this, the grid Dh~ k was made finer in the (n+-n)  transition regions and in the shock-wave 

region. The numerical experiment was conducted on the grid D~X k with the steps 

hk = ah,  k = 1 , . . . , / x ' ;  

h k = / 3 h - 7 ( k - h ' - l ) ,  k =/~" + 1 , . . . ,2 /~ ' ;  

hk = h, k = 2/~" + 1, . . .  ,2 (K+ - /~ ' ) ;  

hk = h + 7(k - 2K+ + 2/~" - 1), k = 2K+ - 2/~" + 1 , . . . ,  2K+ - /~ ' ;  

hk = ah, k = 2K+ - h" + l , . . . , 2 K +  + 5f~'; 

h k = t 3 h - 7 ( k - 2 K + - 5 r ~ ' - l ) ,  k = 2 K + + 5 h ' + l , . . . , 2 K + + 6 h ' ;  

hk = h, k = 2K+ + 6/~" + 1 , . . . ,  4K+ + 2/~'; 

hk = h + 7(k - 4K+ - 2/~" - 1), k = 4K+ + 2/~" + 1 , . . . ,  4K+ + 3/~'; 

hk = ah, k = 4K+ + 3/~" + 1 , . . . , K .  

Here /3 = a - 1, 7 = (/3 - 1)h/(/~" - 1), K = 4(K+ + /~'), K+ = (2 + a/2)f~', and h = l/(12a/~').  The 
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parameters a and /~" had the values a = 30 and /~" = 30 and the number of partitions was IV = 2160. The 
grid D~x k was constructed so that its nodes were at points of the (n+-n) transitions. 

The distribution of the electron velocity v is given in Fig. 1. A strong discontinuity is observed before 
the right (n+-n) transition. The distribution of the electron density n is given in Figs. 2 and 3, and Fig. 3 
illustrates the presence of a strong discontinuity in the density distribution n. Thus, a stationary shock wave 
is observed in the (n+-n-n +) ballistic diode. The distribution of the electron temperature T is given in Fig. 4 
and the distribution of the specific heat flux Q is shown in Fig. 5. Tile values of Qk are determined from the 
discrete form of Eq. (6)with (T,)k = sk rain ([~Tkl/hk+l, I~Tk-11/hk), where sk = sign (~Tk)if I~Tk] ~< ](Tk-l I, 
and, otherwise, sk = sign (~Tk-1). Figure 6 gives the distribution of the electric intensity E determined fi'om 
(14) by replacing the integrals by approximate values using the trapezoid rule. 

Conc lu s ion .  The numerical solution given in Figs. 1-6 is qualitatively different from the numerical 
solution of the problem of an (n+-n-n +) ballistic diode within the framework of the gas-dynamic model with 
the Fourier law (7) ignoring the anisotropy of pressure, which was obtained, for example, in [1, 3] for the 
same physical parameters. The results of [1, 3] indicate that in the ballistic diode, the electron density n and 
electron velocity v are continuous despite the characteristic peak of the velocity v before the right (n + u) 
transition. [It should be noted that in [3], as in the present paper, the numerical solution of the problem of a 
(n+-a-n +) ballistic diode was obtained using an iterative method.] 
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